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1 Introduction

The real time processing of very large volumetric meshes intro-
duces specific algorithmic challenges due to the impossibility of
fitting the input data in the main memory of a computer. The basic
assumption (RAM computational model) of uniform-constant-time
access to each memory location is not valid because part of the
data is stored out-of-core or in external memory. The performance
of most algorithms does not scale well in the transition from the
in-core to the out-of-core processing conditions. The performance
degradation is due to the high frequency of I/O operations that may
start dominating the overall running time.

Out-of-core computing [28] addresses specifically the issues of
algorithm redesign and data layout restructuring to enable data ac-
cess patterns with minimal performance degradation in out-of-core
processing. Results in this area are also valuable in parallel and dis-
tributed computing where one has to deal with the similar issue of
balancing processing time with data migration time.

The solution of the out-of-core processing problem is typically
divided into two parts:

(i) analysis of a specific algorithm to understand its data access
patterns and, when possible, redesign the algorithm to maximize
their locality;

(ii) storage of the data in secondary memory with a layout con-
sistent with the access patterns of the algorithm to amortize the cost
of each I/O operation over several memory access operations.

In the case of a hierarchical visualization algorithms for volumet-
ric data the 3D input hierarchy is traversed to build derived geomet-
ric models with adaptive levels of detail. The shape of the output
models is then modified dynamically with incremental updates of
their level of detail. The parameters that govern this continuous
modification of the output geometry are dependent on the runtime
user interaction making it impossible to determine a priori what lev-
els of detail are going to be constructed. For example they can be
dependent from external parameters like the viewpoint of the cur-
rent display window or from internal parameters like the isovalue
of an isocontour or the position of an orthogonal slice. The struc-
ture of the access pattern can be summarized into two main points:
(i) the input hierarchy is traversed level by level so that the data in
the same level of resolution or in adjacent levels is traversed at the
same time and (ii) within each level of resolution the data is mostly
traversed at the same time in regions that are geometrically close.

In this paper I introduce a new static indexing scheme that in-
duces a data layout satisfying both requirements (i) and (ii) for the
hierarchical traversal of n-dimensional regular grids. In one partic-
ular implementation the scheme exploits in a new way the recursive
construction of the Z-order space filling curve. The standard index-
ing that maps the inputnD data onto a 1D sequence for the Z-order
curve is based on a simple bit interleaving operation that merges
the n input indices into one index n times longer. This helps in
grouping the data for geometric proximity but only for a specific
level of detail. In this paper I show how this indexing can be trans-
formed into an alternative index that allows to group the data per
level of resolution first and then the data within each level per ge-
ometric proximity. This yields a data layout that is appropriate for
hierarchical out-of-core processing of large grids.

The scheme has three key features that make it particularly at-
tractive. First the order of the data is independent of the out-of-core
blocking factor so that its use in different settings (e.g. local disk
access or transmission through a network) does not require large
data reorganization. Secondly the conversion from the standard Z-
order indexing to the new index can be implemented with a sim-
ple sequence of shift operations making it appealing for a possible
hardware implementation. Third there is no data replication which
is especially desirable when the data is accessed through slow con-
nections and avoids eventual problems of data consistency.

Beyond the theoretical interest in developing hierarchical index-
ing schemes for n-dimensional space filling curves the approach is
currently targeted for its practical use in out-of-core visualization
algorithms. Experimental results and theoretical analysis are re-
ported in this paper for the simple case of orthogonal slicing of vol-
umetric data. The results show how the practical performance en-
hancement corresponds to the theoretical expectations. The scheme
is also targeted to perform out-of-core progressive computation of
general slices, for its use in combination with the 3D progressive
isocontouring algorithm [24] and for out-of-core visualization of
large terrains using edge bisection hierarchies [11, 19].

The remainder of this paper is organized as follows. Section 2
discusses briefly previous work in related areas. Section 3 intro-
duces the general framework for the computation of the new index-
ing scheme. Section 4 discusses the basic implementation of the
approach for binary tree hierarchy. Section 5 presents the exten-
sion to higher order hierarchies. Sections 7 and 8 discuss possible
extensions of the scheme and concluding remarks.

2 Related Previous Work

External memory algorithms [28], also known as out-of-core al-
gorithms, have been rising in recent years to the attention of the
computer science community since they address systematically the
problem of non uniform memory structure of modern computers
(fast cache, main memory, hard disk, ...). This issue is particularly
important when dealing with large data-structures that do not fit in
the main memory of a single computer since the access time to each
memory unit is dependent on its location. New algorithmic tech-
niques and analysis tools have been developed to address this prob-
lem for example in the case of geometric algorithms [20, 2, 13, 1]
or scientific visualization [10, 4]. Closely related issues emerge in
the area of parallel and distributed computing where remote data
transfer can become a primary bottleneck in the computation. In
this context space filling curves are often used as a tool to deter-
mine very quickly data distribution layouts that guarantee good ge-
ometric locality [23, 14, 21]. Space filling curves [26] have been
also used in the past in a wide variety of applications [3] both be-
cause of their hierarchical fractal structure as well as for their well
known spatial locality properties. The most popular is the Hilbert
curve [15] which guarantees the best geometric locality proper-
ties [22]. The pseudo-Hilbert scanning order [8, 7, 16] generalizes
the scheme to rectilinear grids that have different number of sam-
ples along each coordinate axis.

Recently Lawder [17, 18] explored the use of different kinds of
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Figure 1: (a-e) The first five levels of resolution of the 2D Lebesgue’s space filling curve. (f-j) The first five levels of resolution of
the 3D Lebesgue’s space filling curve.

space filling curves to develop indexing schemes for data storage
layout and fast retrieval in multi-dimensional databases.

Balmelli at al. [5, 6] use the Z-order space filling curve to nav-
igate efficiently a quad-tree data-structure without using pointers.
They use simple closed formulas for computing neighboring rela-
tions and nearest common ancestors between nodes to allow fast
generation of adaptive edge-bisection triangulations. They im-
prove on the basic data-structure already used for terrain visual-
ization [11, 19] or adaptive mesh refinement [25]. The use of the Z-
order space filling curve for traversal of quadtrees [27] (also called
Morton-order) and has been also proven useful in the speedup of
matrix operations allowing to make better use of the memory cache
hierarchies [9, 29, 12].

In the approach proposed here a new data layout is used to al-
low efficient progressive access to volumetric information stored in
external memory. This is achieved by combining interleaved stor-
age of the levels in the data hierarchy while maintaining geometric
proximity within each level of resolution. One main advantage is
that the resulting data layout is independent of the particular adap-
tive traversal of the data. This improves fundamentally from the
previous schemes since they used the space filling curves only for
computation and dynamic relocation of data layouts for single res-
olution or fixed adaptive resolution meshes.

3 The General Framework

Consider a setS of n elements decomposed into a hierarchyH of
k levels of resolutionH = fS0; S1; : : : ; Sk�1g such that:

S0 � S1 � � � � � Sk�1 = S

whereSi is said to be coarser thanSj iff i < j. The order of
the elements inS is defined by the cardinality functionI : S !
f0 : : : n� 1g. This means that the following identity always holds:

S[I(s)] � s

where the square brackets are used to index an element in a set.
Let’s define a derived sequenceH0 of setsS0i as follow:

S
0
i = SinSi�1 i = 0; : : : ; k � 1

where formally S�1 = �. The sequenceH0
=

fS00; S01; : : : ; S0k�1g is a partitioning ofS: A derived cardinality
functionI 0 : S ! f0 : : : n � 1g can be defined on the basis of the
following two properties:

� 8s; t 2 S
0
i : I

0
(s) < I

0
(t), I(s) < I(t);

� 8s 2 S
0
i; 8t 2 S

0
j : i < j ) I

0
(s) < I

0
(t):

If the original functionI has strong locality properties when re-
stricted to any level of resolutionSi then the cardinality functionI 0

generates the desired global index for hierarchical and out-of-core
traversal.

The construction of the function can be achieved in the following
way: (i) determine the number of elements in each derived setS

0
i

and (ii) determine a cardinality functionI 00i = I
0j
S
0

i

restriction ofI 0

to each setS0i. In particular ifci is the number of elements ofS0i one
can predetermine the starting index of the elements in a given level
of resolution by building the sequence of constantsC0; : : : ; Ck�1

with

Ci =

i�1X
j=0

cj : (1)

Secondly one needs to determine a set of local cardinality functions
I
00
i : S

0
i ! f0 : : : ci � 1g so that:

8s 2 S
0
i : I

0
(s) = Ci + I

00
i (s): (2)

The computation of the constantsCi can be performed in a pre-
processing stage so that the computation ofI

0 is reduced to the
following two steps:

2
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Figure 2: Construction of the 1D index from the
Lebesgue’s Z-order space filling curve. In the 3D case
the original index is a set of three bit-strings. The 1D
index is formed by interleaving the bit of the three se-
quences into a single bit-string.

� given s determine its level of resolutioni (that is thei such
thats 2 S

0
i);

� computeI 00i (s) and add it toCi:

These two steps need to be performed very efficiently because they
are going to be executed repeatedly at run time. The following
sections report practical realizations of this scheme for rectilinear
cube grids in any dimension.

4 Binary Tree And the Lebesgue Space
Filling Curve

This section reports the details on how to derive from the Z-order
space filling curve the local cardinality functionsI 00i for a binary
tree hierarchy in any dimension.

4.1 Indexing the Lebesgue Space Filling Curve

The Lebesgue space filling curve, also called Z-order space filling
curve for its shape in the 2D case, is depicted in figure 1. In the
2D case the curve can be defined inductively by a base Z shape of
size1 (figure 1a) whose vertices are replaced each by a Z shape of
size1

2
: The vertices obtained are then replaced by Z shapes of size1

4

(figure 1c) and so on. In general theith level of resolution is defined
as the curve obtained by replacing the vertices of the(i � 1)

th

level of resolution with Z shapes of size1
2i

. The 3D version of
this space filling curve has the same hierarchical structure with the
only difference that the basic Z shape is replaced by a connected
pair of Z shapes lying on the opposite faces of a cube as shown
in Figure 1f. Figure 1f-j shows five successive refinements of the
3D Lebesgue space filling curve. Thed-dimensional version of the
space filling curve has also the same hierarchical structure where
the basic shape (the Z of the 2D case) is defined as a connected pair
of (d� 1)-dimensional basic shapes lying on the opposite faces of
ad-dimensional cube.

The property that makes the Lebesgue’s space filling curve par-
ticularly attractive is the easy conversion from thed indices of
a d-dimensional matrix to the 1D index along the curve. If one
elemente hasd-dimensional reference(i1; : : : ; id) its 1D refer-
ence is built by interleaving the bits of the binary representa-
tions of the indicesi1; : : : ; in. In particular if ij is represented
by the string ofh bits \b

1

jb
2

j � � � bhj " (with j = 1; : : : ; d) then
the 1D reference ofe is represented the string ofhd bits I =

\b
1

1b
1

2 � � � b1db21b22 � � � b2d � � � bh1 bh2 � � � bhd". Figure 2 shows this inter-
leaving scheme in the 3D case.

The 1D order can be structured in a binary tree by considering
elements of leveli those that have the lasti bits all equal to 0.

(a)

(e)

(i)

(b) (c)

(f)(d)

(g) (h)

Figure 3: The nine levels of resolution of the binary tree
hierarchy defined by the 2D space filling curve applied
on 16 � 16 rectilinear grid. The coarsest level of res-
olution (a) is a single point. The number of points that
belong to the curve at any level of resolution (b-i) is dou-
ble the number of points of the previous level.

This yields a hierarchy where each level of resolution has twice
as many points as the previous level. From a geometric point of
view this means that the density of the points in thed-dimensional
grid is doubled alternatively along each coordinate axis. Figure 3
shows the binary hierarchy in the 2D case where the resolution of
the space filing curve is doubled alternatively along thex and y
axis. The coarsest level (a) is a single point, the second level (b)
has two points , the third level (c) has four points (forming the Z
shape) and so on.

4.2 Index Remapping

The cardinality function discussed in section 3 for a binary tree
case has the structure shown in table 1. Note that this is a general
structure suitable for out-of-core storage of static binary trees. It
is independent of the dimensiond of the grid of points or of the
Z-order space filling curve.

The structure of the binary tree defined on the Z-order space fill-
ing curve allows to determine easily the three elements that are nec-
essary for the computation of the cardinality which are: (i) the level
i of an element, (ii) the constantsCi of equation (1) and (iii) the
local indicesI 00i .

i - if the binary hierarchy hask levels then the element of Z-order
index j belongs to the levelk � h whereh is the number of
trailing zeros in the binary representation ofj;

Ci - the number of elements in the levels coarser thani, with i > 0,
isCi = 2

i�1 with C0 = 0;

I
00
i - if an element has indexj and belongs to the setS0i then j

2i
is

3
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level 0 1 2 3 4
Z-order index (2 levels) 0 1
Z-order index (3 levels) 0 2 1 3
Z-order index (4 levels) 0 4 2 6 1 3 5 7
Z-order index (5 levels) 0 8 4 12 2 6 10 14 1 3 5 7 9 11 13 15
hierarchical index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 1: Structure of the hierarchical indexing scheme for binary tree combined with the order defined by the Lebesgue space filling curve.

an odd number. Its local index is then:

I
00
i (j) =

�
j

2
i+1

�
:

These three elements can be put together to build an efficient algo-
rithm that computes the hierarchical indexI 0(s) = Ci + I

00
i (s) in

the two steps shown in the diagram of Figure 4:

1. set to 1 the bit in positionk + 1;

2. shift to the right until a 1 comes out of the bit-string.

Clearly this diagram could have a very simple and efficient hard-
ware implementation. The software C++ version can be imple-
mented as follows:

inline adhocidex remap(register adhocindex i){
i |= last_bit_mask; // set leftmost one
i /= i&-i; // remove rightmost zeros
return (i>>1); // remove rightmost+ one

}
This code would work only on machines with two’s complement
representation of numbers. In a more portable version one needs to
replacei /= i&-i with i /= i&((˜i)+1) .

1

Shift

0

Shift

Loop: While the outgoing bit is zero

Incoming bit Outgoing bit

0 0 1 0 1 1 0 1 0 0

1 0 0 1 0 1 1 0 1 0! 0

0 1 0 0 1 0 1 1 0 1! 0

0 0 1 0 0 1 0 1 1 0! 1

0 0 1 0 0 1 0 1 1 0

(a) (b)

Step 1: shift right with incoming bit set to 1

shift right with incoming bit set to 0

Figure 4: (a) Diagram of the algorithm for index remap-
ping from Z-order to the hierarchical out-of-core binary
tree order. (b) Example of the sequence of shift oper-
ations necessary to remap an index. The top element
is the original index the bottom is the output remapped
index.

5 2
n tree and the Lebesgue space filling

curve

In some occurrences it might be appropriate to use a blocking
scheme that follows better the underlying quad-tree/octtree struc-
ture of the hierarchy. For example when large disk blocks are being
used it is better to use a hierarchy with less levels of resolution than

the basic binary tree scheme in the previous section. At this end one
can apply the following generalized version of the index remapping
scheme.

The scheme of Figure 4 correspond to a binary tree because the
sequence of shifts in the loop are performed one bit at a time. To
align the data layout to a2l tree one needs to shifts the bit-string by
l bits at a time. For examplel = 2 aligns the data to a quad-tree
andl = 3 aligns the data to an octtree.

The Z-order index of the data is shifted to the right in blocks ofl

bits to determine the level in the hierarchy. Following the notation
of section 3 we have:

i - is the number of trailing sequences ofl zeros at the end of the
bit-string;

Ci - the number of elements in the levels coarser thani, with i > 0,
isCi =

�
2
l
�i�1

with C0 = 0;

I
00
i - if an element has indexj and belongs to the setS0i then

�
j

2i

�
has one of its lastl bits different from 0. The local index is
then:

I
00
i (j) =

�
j

2
li

�
�
�

j

2
l(i+1)

�
� 1:

The computation of the final indexI 0(s) = Ci + I
00
i (s) is then

performed with the scheme of Figure 5. Note how the term sum
Ci + I

00
i (s) is computed directly by shiftingI(s) to the right and

adding the complement of its high bits. This can be done because

Ci = 2
l(i�1) and henceCi�

j
j

2
l(i+1)

k
�1 can be obtained directly

by complementing the rightmostl(k � i� 1) bits of
j

j

2
l(i+1)

k
:

Shift

Loop: While the last l bits are all zero
shift right l bits with incoming bits set to 0

+

Perform the following arithmetic operation

00 0 00 0

Zeros inserted from the left

˜

˜

˜

˜
˜

˜

Figure 5: Diagram of the algorithm for index remapping
for blocks that scale with a factor of 8 (three bits).

4
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Figure 6: Maximum data loaded from disk (vertical axis) per slice computed depending on the level of subsampling (horizontal axis) for a
8G dataset. (a) Comparison of the blocking approach with the 1-bit shift and 3-bits shifts schemes proposed here. The values on the vertical
axis are reported in logarithmic scale to highlight the difference in orders of magnitude at any level of resolution. (b) Same plot with vertical
axis in linear scale that highlights the difference in absolute values at the finest level of resolution.

6 Preliminary Results:
Orthogonal Slicing

This section presents some preliminary results based on the sim-
ple application of computing orthogonal slices of a 3D rectilinear
grid of data at different levels of resolution. The data layout pro-
posed here is compared with the two most common array layouts:
the standard row major structure and theh� h� h block-wise de-
composition of the data. Both practical performance tests and for-
mal complexity analysis lead to the conclusion that the data layout
proposed here allows to achieves substantial speedup when used at
coarse resolution or in a progressive fashion with acceptable per-
formance penalty if used only at the highest level of resolution.

6.1 Out-of-core Complexity Analysis

The out-of-core analysis reports the number of data blocks trans-
ferred from disk under the assumption that each block of data of
sizeb is transferred in one operation independently from how much
data in the block is actually used. At fine resolution the simple row
major array storage achieves the best and worst performances de-
pending on the slicing direction. If the overall grid size isg and
the size of the output ist then the best slicing direction requires to
loadO(t=b) data blocks (which is optimal) but the worst possible
direction requires to loadO(t) blocks (forb = 
( 3

p
g)). In the case

of simpleh�h�h data blocking (which has best performance for
h =

3
p
b) the blocks of data loaded at fine resolution areO(

t

3p
b2
).

Note that this is much better than the previous case because the per-
formance is close to (even if not) optimal independently from the
particular slicing direction. For subsampling rate ofk the perfor-
mance degrades toO(

tk
2

3p
b2
) for k <

3
p
b. This means that at coarse

subsampling the performance goes down toO(t). The advantage
of the scheme proposed here is that independently from the level
of subsampling each block of data is used for a portion of3

p
b
2 so

that independently from the slicing direction and subsampling rate
the worst case performance isO(

t

3p
b2
). This implies that the fine

resolution performance of the scheme is equivalent to the standard
blocking scheme while at coarse resolutions it can get orders of
magnitude better. More importantly this allows to produce coarse
resolution outputs at interactive rate independently from the total

size of the data-set.
A more accurate analysis can be performed to take into account

the constant factors that are hidden in the bigO notation and de-
termine exactly which approach requires to load into memory more
data from disk. We can focus our attention to the case of a 8G bytes
data-set with disk pages with of the order of 10K each as shown in
diagram of Figure 6. One slice of data is 4M bytes large. In the
standard blocking case one would use32 � 32 � 32 blocks. The
data loaded from disk for a slice is 32 times larger than the output,
that is 128M bytes. As the subsampling increases up to a value of
32 (one sample out of 32) the amount of data loaded does not de-
creases because each32� 32 � 32 block needs to be loaded com-
pletely. At lower subsampling rates the data overhead remains the
same: the data loaded is 32768 times larger than the data needed.
In the 3-bits shift case the data layout is equivalent to an octtree
which maps to a quadtree on the slice. The data loaded is grouped
in blocks along the hierarchy that gives an overhead factor in num-
ber of blocks of1 +

1

4
+

1

16
+

1

64
+ � � � < 4

3
while each block

is 28K. This means that at the finest resolution there is a overhead
of about16:3%. The advantage is that each time the subsampling
rate is doubled the amount of data loaded from external memory is
reduced by a factor of four. The same analysis for the 1-bit shift
case of section 4 would induce similarly an overhead factor of 2 for
the number of blocks at finest resolution. To have each block cover
an equivalent region of the mesh they need to have half size that is
16K. A reduction by a factor of four of the number of blocks used
is obtained each time the subsampling rate is doubled.

6.2 Experimental Tests

A series of tests have been performed to verify the performance of
the approach. The out-of-core component of the scheme has been
implemented simply by mapping a 1D array of data to a file on
disk using themmapfunction. In this way the I/O layer is imple-
mented by the operating system that pages in and out a portion of
the data array as needed. No multi-threaded component is used to
avoid blocking the application while retrieving the data. The blocks
of data defined by the system are typically 4Kbytes. Figure 7(a)
shows performance tests executed on a Pentium III Laptop 500Mhz
with 128M of RAM accessing a 1Gbyte dataset (1k � 1k � 1k

grid of char). The two schemes proposed here, 3-bits shift from
section 5 and 1-bits shift from section 4 show the best scalability

5
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Figure 7: Two comparisons of the computation times of four different data layout schemes. The vertical axis is the computation time in
seconds. The horizontal axis is the level of subsampling of the slicing scheme (test at the finest resolution are on the left). The two schemes
proposed here, 3-bits shift from section 5 and 1-bits shift from section 4, show best overall performance.

in performance. The blocking scheme with163 chunks of regular
grids shows the next best compromise in performance. The(i; j; k)

row major storage scheme has the worst performance compromise
because of its dependency on the slicing direction: best for(j; k)

plane slices and worst for(j; i) plane slices. Figure 7(b) shows the
performance results for a test run on an SGI MIPS R12000 300Mhz
with 600M of memory available for the application. In this case the
dataset is 8G (2k � 2k � 2k grid of char).

7 Variations on a Theme

The basic scheme presented in section 3 has been implemented in
sections 4 and 5 for the subsampling of cube grids with power of
two side and based on the Z-order space filing curve. Many varia-
tions on the same theme can be also implemented depending on the
requirements of a specific dataset while maintaining the same per-
formance gain. The following of this section reports a few simple
examples of possible variations.

7.1 Simple Rectangular Grids

The case of a rectangular grid of size2n1 � � � � � 2
nd can be cast

in the same framework with a simple modification of the bit inter-
leaving function shown in Figure 2 of the 3D case. A global index
of n =

P
d

i=1
ni bits can be built simply interleaving unevenly the

bits from each index. Figure 8 shows and example of this gener-
alized Z-order. What bits go at the beginning or at the end of the
global index determined which data belongs to the coarse levels of
resolution and which is fine resolution information.

7.2 Edge Bisection Refinement

If the regular grid is used for edge bisection refinement [24, 11, 19]
it must have size(2n1+1)�� � ��(2

nd+1). Three aspects need to
be taken care of: (i) the grid may be rectangular, (ii) the resolution
in each direction is2ni + 1 instead of2ni , and (iii) the order of
refinement is not exactly the same as in the binary tree of section 4.

The best bit interleaving to generate the global index is achieved
by using as leading bits the fistmi = n� ni of each index, where
n = min (n1; : : : ; nd). The rest is done as a regular interleaving
as in Figure 2. In this way the hierarchy corresponds to the edge

Figure 8: Generalization of construction of the 1D in-
dex from the Lebesgue’s Z-order space filling curve for
restricted rectangular grids.

bisection applied to a coarse mesh of size(2
m1+1)�� � ��(2

md+

1).

The fact that the resolution in each direction is2
ni + 1 instead

of 2ni can be dealt with by storing first the grid of size(2n1) �
� � � � (2

nd) followed byd grids of dimensiond� 1 and
�
d

2

�
grids

of dimensiond� 2 and so on. The index is computed in the usual
way form thed indices(i1; : : : ; id) if all of them have leading bit
equal to zero. If one or more indices have leading bit set to 1 a
lower dimensional grid index is computed using only the indices
with leading bit equal to 0. The additional offset necessary can be
precomputed and stored in a table of

P
d

i=0

�
d

i

�
elements.

Finally the hierarchy needs to be aligned as much as possible
with the order of insertion of the vertices in an edge bisection hi-
erarchy. The binary hierarchy applied to the Z-order curve yields
the structure of Figure 3 where the number of vertices is double
along each axis independently. In the edge bisection hierarchy (see
Figure 9a) the new vertices are added first at the center of each
square and then in the middle of vertical/horizontal edges alter-
natively.The same hierarchy is achieved by replacing the Z-order
space filling curve with the curve of Figure 9b. In terms of compu-
tation of the global index one needs to combine the bit interleaving
step with the mapping of each pair of bits with the following table:
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(a)

(b)

Figure 9: (a) 2D edge bisection refinement sequence.
(b) Curve that replaces the Z-order to obtain a hierarchy
fully synchronized with the edge bisection subdivision.

0 0 7! 0 0
1 1 7! 1 0
0 1 7! 0 1
1 0 7! 1 1

Similar result can be achieved in the 3D case using the following
bit remapping table:

0 0 0 7! 0 0 0
1 1 1 7! 1 0 0
0 1 1 7! 0 1 0
1 0 1 7! 1 1 0
1 1 0 7! 0 0 1
1 0 0 7! 1 0 1
0 1 0 7! 0 1 1
0 0 1 7! 1 1 1

Unfortunately in the 3D case the simple index remapping adjusts
the hierarchy only partially because in the edge bisection the num-
ber of vertices is not exactly doubled at each refinement (even if
it is on average). In particular in the standard binary tree sequence
one vertex is replaced by two then by four and finally eight vertices.
In the edge bisection one vertex is replaced by two then by five and
finally by eight. This makes it impossible to have a fully aligned
binary hierarchy. A more complicated implementation of the basic
approach of section 3 would be needed.

7.3 Not Only Subsampling

It is important to remark that the scheme introduced here deal only
with the out-of-core data layout of a hierarchy. With reference to
the general scheme of section 3 there is no actual constraint for
the setS0i to be equal toSinSi�1. Depending on the application
it may be sufficient that the sequencefS0; : : : ; S0ig of the coarse
levels up to the resolutioni allows to reconstruct the originalSi
within a certain approximation error. In other terms this seems an
appropriate data layout for a wavelet representation, even if it is not
obvious how to deal with the problem of the eventual compression
that one might also want to achieve, since it changes the location
(but not the order) of the data.

8 Conclusions and Future Direction

The present paper introduces a new indexing and data layout
scheme that is useful for out-of-core hierarchical traversal of large
datasets. Practical tests and theoretical analysis for a simple case
of orthogonal slicing show the performance improvements that can
be achieved with this approach especially in a progressive compu-
tation setting. In the near future this scheme is going to be used as a
basis for out-of-core computation of general slices, isocontours and
navigation of large terrains.

Future direction that are being considered include the combina-
tion with wavelet compression schemes, the extension to general
rectangular grids and to non-rectilinear hierarchies.
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